لنفترض أن السلسلة الزمنية X مخفية حالة المشي العشوائي غاوس ونلاحظ يكس ه، حيث ه هو الضوضاء البيضاء غاوس مستقلة عن X. مقدر كالمان من X في هذه الحالة لديها حالة مستقرة حل شكل مغلق ويتطابق مع المتوسط المتحرك الأسي أكثر سلاسة مع ثابت تمهيد المعلمة. وتبدو معلمة التمهيد المثلى مثل لامدا فراك حيث p هي صيغة تربيعية للإشارة إلى نسبة الضوضاء بين e و دلتا. انظر صيغة لشكل مغلق (من خلال البحث كالمان حل عشوائي المشي الضوضاء). إذا كان لدينا بدلا من ذلك الملاحظات مستقلة متعددة Y1، Y2. ، بمعنى e1 المستقل، e2. هل هناك حل شكل مغلق للمقدر الأمثل ل X ما الذي سيبدو عليه إذا كان e1 و e2 مستقل وموزع بشكل متماثل (نفس الانحراف المعياري)، أستطيع أن أتصور أن أفضل مقدر ل X هو ببساطة متوسط المقدرين الذين تم الحصول على علاج مشكلة كما وحيد المتغير لكل Y. إذا كان E1، E2. تباين مختلف، فإن بعض السلسلة Y يجب أن يكون لها وزن منخفض في المقدر العام لأن نسبة الإشارة إلى الضوضاء تكون أقل فقرا. ولعل حل الشكل المغلق هو خطية مع معاملات تتناسب مع كل إشارة Y إلى نسبة الضوضاء. هل هناك حل نموذج مغلق معروف يبدو أن غوغل ليس مفيدا جدا في هذه المشكلة. سأل 19 فبراير 13 في 6: 54 هذا الموضوع يسأل عندما منفصلة الوقت مرشح كالمان هو أفضل من المتوسط المتحرك بسيط من الملاحظات: ثيريس أي إجابة نهائية. يمكن للشخص إعطاء مثال نهائي حيث مرشح كالمان، من الناحية المثالية في حالة 1D بسيطة، يفعل شيئا مختلفا (وأفضل) من الحفاظ على المتوسط المتحرك، وتذكر الشروط عندما مرشح كالمان سوف يقلل إلى متوسط متحرك بسيط واحد الفكر هو أن فإن تصفية كالمان لا تزن جميع نقاط البيانات بالتساوي لأن التباين هو أصغر في البداية ويحصل على أفضل مع مرور الوقت. ولكن يبدو أن ذلك من شأنه أن يهم فقط بالقرب من الملاحظات الأولية، وبمجرد أن التباين التقارب، فإن مرشح كالمان يزن كل ملاحظة على قدم المساواة تماما مثل المتوسط المتحرك، لذلك لا نرى عندما تكون مختلفة هما ولماذا المرشح سيكون أفضل. طلب 17 فبراير 15 في 23:52 كما يقول الجواب الأول (مع معظم الأصوات)، مرشح كالمان هو أفضل في أي حالة عندما تتغير الإشارة. لاحظ بيان المشكلة تستخدم هذه الخوارزمية لتقدير بعض الجهد المستمر. كيف يمكن استخدام فلتر كالمان لهذا يكون أفضل من مجرد الحفاظ على متوسط تشغيل هذه الأمثلة فقط تبسيط حالات الاستخدام للمرشح باستخدام فلتر كالمان لتقدير الجهد المستمر هو بالتأكيد، مبالغة. وفي هذه المشكلة بالذات، من الأفضل استخدام المتوسط الجاري، الذي نعرفه هو أفضل مقدر للتوزيعات الغوسية. في هذا المثال الجهد المقاس هو الجهد الفعلي الخامس ولكن مع بعض الضوضاء عادة على غرار 0 يعني غاوس (الضوضاء البيضاء). بحيث قياساتنا هي غاوس مع مينف، و سيغماسيغما الضوضاء. مرشح كالمان هو أكثر ملاءمة لتقدير الأشياء التي تتغير مع مرور الوقت. وأكثر الأمثلة الملموسة هي تتبع الأجسام المتحركة. دعونا نتخيل رمي الكرة، ونحن نعلم أنها سوف تجعل قوس مكافئ، ولكن ما سوف تظهر مقدرين لدينا مرشح كالمان ستكون قريبة جدا من المسار الفعلي لأنه يقول أحدث القياس هو أكثر أهمية من كبار السن (عندما التباين منخفض هذا هو). متوسط التشغيل يأخذ جميع القياسات على قدم المساواة مسار الكرة الزرقاء، الأحمر تشغيل المتوسط (آسف لا كالمان إذا كان لدي الوقت سوء رميها في هناك إذا كان لدي الوقت، ولكن سوف أقرب لي إلى الخط الأزرق على افتراض كنت على غرار النظام جيدا ) يقول مرشح كالمان من ناحية أخرى، إذا كان لدينا كونفاريانس والمتبقية كانت صغيرة (وهذا يعني أن لدينا تقدير جيد)، ثم نحن ذاهبون إلى التمسك مع التقدير السابق وقرص عليه قليلا على أساس المتبقية (أو تقديرنا خطأ). الآن منذ لدينا كك شات قريب جدا من الحالة الفعلية، عندما نجعل من التحديث القادم، وسوف نستخدم حالة النظام الذي يطابق بشكل وثيق الحالة الفعلية. في X30، يقول متوسط التشغيل، فإن الشرط الأولي y (0) لا يقل أهمية عن y (29)، وهذا هو، وتحصل على خطأ كبير. وشكل مرشح كالمان لهذا. وقال انه منذ خطأنا آخر مرة كانت ضخمة، يتيح إجراء تغيير جذري في تقديرنا (لدينا شات) حتى عندما نستخدمها للتحديث القادم، وسوف يكون أقرب إلى ما يحدث فعلا آمل أن يجعل بعض الشعور أنا فقط لاحظت سؤالك يسأل عن المتوسط المتحرك مقابل كالمان. أجبت على تشغيل أفغ مقابل كالمان (وهذا هو موضوع الارتباط الذي قدمته) فقط لإضافة مزيد من المعلومات أكثر تحديدا للمتحرك (نافذة) المتوسط. المتوسط المتحرك هو مقدر أفضل للقيم المتغيرة. لأنه يأخذ فقط بعين الاعتبار عينات أكثر حداثة. لسوء الحظ، فإنه لديه تأخر المرتبطة به، وخاصة حول المشتقات المتغيرة (مجرد نظرة بالقرب من T30، حيث المشتقة هو الانتقال من الإيجابية إلى السلبية). ويرجع ذلك إلى أن المتوسط بطيء لرؤية التذبذب. وهذا هو عادة لماذا نستخدمه، لإزالة تذبذب (الضوضاء). حجم النافذة أيضا يلعب دورا. نافذة أصغر عادة ما تكون أقرب إلى القيم المقاسة، الأمر الذي يجعل من المنطقي والأصوات جيدة، والحق الجانب السلبي من هذا هو إذا كان لديك قياسات صاخبة، نافذة صغيرة يعني المزيد من الضوضاء يظهر أكثر في الإخراج. دعونا ننظر في السؤال الآخر مرة أخرى القياسات مع المتوسط .5، سيغما .1 ض 0.3708435، 0.4985331، 0.4652121. متوسط العينات الثلاثة الأولى هو 0.4448629 ليس بالضبط قريبة من القيمة المتوقعة 0.5. هذا يظهر مرة أخرى، أنه مع نافذة أصغر، والضوضاء له تأثير أكثر عمقا على الناتج. لذلك ثم منطقيا الخطوة التالية هي أن تأخذ نوافذ أكبر، لتحسين الحصانة الضوضاء لدينا. حسنا، اتضح أن النوافذ الكبيرة هي أبطأ حتى تعكس التغييرات الفعلية (أنظر مرة أخرى إلى t30 في الرسم البياني) وأقصى حالة للنوافذ هي في الأساس متوسط التشغيل (الذي نعرفه بالفعل سيئا لتغيير البيانات) الآن العودة إلى السحرية مرشح كالمان. إذا كنت تفكر في ذلك هو مماثل لمتوسط 2 نموذج النافذة (مماثلة ليست هي نفسها). انظروا إلى X كك في خطوة التحديث، فإنه يأخذ القيمة السابقة، ويضيف إليها نسخة مرجحة من العينة الحالية. قد تفكر، حسنا ماذا عن الضوضاء لماذا لا تكون عرضة لنفس المشكلة كمتوسط نافذة مع حجم أخذ العينات الصغيرة لأن مرشح كالمان يأخذ في الاعتبار عدم اليقين من كل قياس. ويمكن أن تكون قيمة الترجيح K (كسب الكالمان) على أنها نسبة بين التباين (عدم التيقن) في تقديرك والتغاير (عدم التيقن) من التقدير الحالي (في الواقع الباقي، ولكن من الأسهل التفكير فيه بهذه الطريقة) . حتى إذا كان أحدث قياس لديه الكثير من عدم اليقين K النقصان، وبالتالي فإن أحدث عينة يلعب لفة أصغر. إذا كان أحدث قياس أقل من عدم اليقين من التنبؤ، ك الزيادات، والآن المعلومات الجديدة تلعب لفة أكبر في التقدير القادم. حتى مع حجم عينة صغيرة، مرشح كالمان لا يزال حجب الكثير من الضوضاء. على أي حال، آمل أن يجيب على الإطار أفغ مقابل سؤال كالمان أجاب الآن فبراير 18 15 في 3:34 أخذ آخر: تصفية كالمان يتيح لك إضافة المزيد من المعلومات حول كيفية النظام الذي ترشيح الأعمال. وبعبارة أخرى، يمكنك استخدام نموذج إشارة لتحسين إخراج المرشح. بالتأكيد، مرشح المتوسط المتحرك يمكن أن تعطي نتائج جيدة جدا عندما كنت تتوقع الإخراج قريب إلى ثابت. ولكن بمجرد أن تكون الإشارة النمذجة ديناميكية (فكر في قياسات الكلام أو الموضع)، فإن المرشح المتوسط المتحرك البسيط لن يتغير بسرعة كافية (أو على الإطلاق) مقارنة بما سيقوم به فلتر كالمان. يستخدم مرشح كالمان نموذج الإشارة، الذي يلتقط معرفتك كيف تتغير الإشارة، لتحسين انتاجها من حيث التباين من الحقيقة. أجاب 18 فبراير 15 في 13: 11Kalman فيلتر - متوسط متحرك جديد انضم في مايو 2008 الحالة: عضو 58 المشاركات المرفقة هي النسخة المتوافقة لكل من الإطار الزمني المتعدد والإطار الزمني الوحيد كالمان فيلتر. مجرد التفكير في ذلك كنوع مختلف من المتوسط المتحرك الأسي. الإعدادات هي مباشرة إلى الأمام. ل أبليدبريس استخدام ما يلي: 0 - سعر الافتتاح 1 - السعر المنخفض 2 - ارتفاع الأسعار 3 - سعر إغلاق ليس لدي أي أنواع أخرى من التسعير المضافة في، ونظرا لطبيعة مرشح لن يكون إضافة أي أكثر في أي منهما. أود أن أذكر أن الفترة مختلفة قليلا عن ما كنت تستخدم في ماس. لا يزال من الناحية الفنية يفعل نفس الشيء مثل الفترة في إما، ولكن نظرا لطبيعة مرشح كالمان زيادة الفترة لا يكون لها نفس التأثير كما يفعل على المتوسطات المتحركة الأخرى. يمكنك أن تلعب حولها مع ذلك، ولكن اقتراح شخصي هو الحفاظ على الفترة في 20،50،100 أو أعلى. و كالمان هو الإعداد لبعض الإعدادات العامة في الوقت الراهن، ولكن إذا كان أي شخص لديه الطموح لفوضى مع المصفوفات فإنه يستخدم لحسابات، واسمحوا لي أن أعرف وأنا سوف اطلاق النار على التعليمات البرمجية طريقك. منذ ذلك الحين، كما ستلاحظ، كالمان العادي لا يمكن أن يكون فعال حقا على المدى الطويل مؤشر مؤشر مثل 200 سما، يمكنك استخدام متعددة إطار الإطار الزمني لتشغيل كالمان على الأطر الزمنية أطول واستخدام ذلك كوتريند للمؤشر. كوت شخصيا أنا أفضل هذا لأنه يخلق أقل تأخر ويحاكي كوتلوكينغ في الرسم البياني أطول للتأكد من إشارات نظرية ماتشكوت. فكرة واحدة هي مؤامرة اليومية أو H4 كالمان على الرسم البياني 15 أو 30 دقيقة، واستخدامها للعب قبالة الاتجاه على المدى الطويل لذلك اليوم. انتهيت للتو من تصحيح المؤشر اليوم، وعلى الرغم من أن من المفيد للغاية، وهذا الإصدار من المؤشر ليس حقا تركيزي الآن. أنا أعمل على تحسين ذلك لبلدي الاحتياجات المحددة التي تنطوي على بعض العمل الرياضيات الثقيلة، ولكن هذا الإصدار هو الإعداد ليكون مانكوت كتميدل في نعومة مقابل زمن الاستجابة المعركة التي ماس دائما تجربة. بالإضافة إلى ذلك منذ أن انتهيت للتو من هذا اليوم ليس لدي استراتيجية التي يتم تطبيقها حاليا، وليس لدي طريق ذهبي إلى الثروات فقط باستخدام مرشح أكثر سلاسة. استخدام فلتر كما تريد، وربما إذا كنت لعبة حولها معها والحصول على الإبداع فإنه قد تجد طريقها إلى استراتيجية التداول الخاصة بك المقبل. فترات كالمان مختلفة - Blue: 500 كالمان-الضوء الأزرق: 200 كالمان - Green: 100 كالمان - Red: 50 كالمان - Orange: 20 كالمان i295.photobucketalbumsm. manperiods. gif كيسن على طول الطريق إلى الأعلى يجب أن يكون الأعضاء على الأقل 0 قسائم للنشر في هذا الموضوع. 1 المتداول ينظر الآن فوريكس فاكتوريريغ هي علامة تجارية مسجلة.
No comments:
Post a Comment